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Thermal defects,  occuring i n  the temperature range 
between room temperature and 35OoC, were "frozen-in" i n  
cadmium sulf ide single c rys ta l  p l a t e l e t s  i n  ultra-high vacuo 
and the e f f e c t s  of the resul t ing disorder upon the spectral  
d i s t r ibu t ion  of photoconductivity i n  the v i s ib l e  range and 
upon conductivity glow curves were studied. Pa ra l l e l  s h i f t s  
toward higher conductivity wi th  increasing heat treatment 
temperatures i n  both the spec t ra l  response curves and the 
glow curves a re  interpreted i n  terms of dissociat ion of a 
defect associate ,  composed o f  a t  l ea s t  three point defects,  
which a c t s  as  a recombination centre.  

Glow curves simultaneously show growth of peaks a t  
approximately 200% and 440°K, 
a re  due t o  the products of the dissociation. Both of these 
peaks are  believed t o  be associated with cadmium vacancies- 
the former a Vcd and the l a t t e r  a c lus t e r  corresponding t o  
an Sn molecule. 

These peaks, it i s  f e l t ,  

By an annealing process, the c rys t a l s  could be return- 
ed t o  approximately the i r  pre-heat t reated s ta tes .  

35OoC heat treatments resul ted i n  a marked i r r eve r s i -  
b l e  increase i n  the i n t r i n s i c  photoconductivity and the dark 
current ,  a decrease and an increase i n  the 200°K and 440% 
peaks respectively.  
t o  the desorption from the c rys t a l ' s  surface of oxygen and 
t o  the formation of cadmium vacancy c lus t e r s  (Sn molecules). 

These e f f ec t s  a re  believed to  be related 
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CHAPTER I 

INTRODUCTION 

It is  w e l l  known that  the photo-electrical  propert ies  
of cadmium sulphide are strongly dependent on the  defect 
s t ruc ture  of the c rys t a l .  The e f f ec t s  of many impurit ies 
i n  CdS have been studied extensively (1-6) and t h e i r  proper- 
t ies are beginning t o  be understood, However, although a 
considerable amount of l i t e r a t u r e  has appeared on the subject 
(5, 7-18), less progress has been made toward the understanding 
of i n t r i n s i c  defects  i n  CdS (i.e. defects composed of the 
nat ive atoms themselves). One reason fo r  t h i s  i s  tha t ,  whereas 
impurit ies can be incorporated in to  c rys t a l s  i n  concentrations 
i n  excess of 10 
a t  room temperature i n  concentrations atrove 1 0 ~ ~ ~ ~ . - ~  as can 
be seen from TSC curves and gain fac tor  estimatfons-which i s  
on the order of the concentrations of accidental  impurit ies i n  
"pure" c rys t a l s ,  Another d i f f i c u l t y  a r i s e s  from the f a c t  that 
the var ie ty  of i n t r i n s i c  defects (including associated point 
defects)  present i n  t h e  crystal  under any given s e t  of condi- 
t ions can be large and experimental r e s u l t s  usual ly  do not 
afford a means of distinguishing between a given point defect 
and a defect associate  involving t h i s  defect .  As an example, 
the  cadmium vacancy has t o  date been associated with a t  least 
five d i f fe ren t  energy levels  i n  the forbidden gap ranging 
from a f e w  tenths  to  1.8 eV, from the conduction band edge 

18 ~ m . ' ~ ,  most i n t r i n s i c  defects  are not found 

(5, 13, 16, 18). 

It i s  the purpose of t h i s  work t o  invest igate  the 
changes i n  i n t r i n s i c  defect s turc ture  i n  undoped s ingle-  
c rys t a l  p l a t e l e t s  of CdS resu l t ing  from heat  treatments i n  
vacuo i n  the temperature range between room temperature and 

1 
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35OoC by means of the spectral response of photoconductivity 
and conductivity nglod’ curves and to make, in conjunction 
with other experiments, further contribution to the identifi- 
cation of the defects occuring in this temperature range. 
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CHAPTER I1 

THEORY 

T 11-1. I n t r i n s i c  Defects i n  CdS (19-20) 

A l l  c rys t a l s  contain imperfections. In  addi t ion t o  
impurity atoms which a re  unavoidably introduced during the 
growth of the c rys t a l ,  there are  cer ta in  other  point defects  
composed of the nat ive atoms. O f  these, the simplest are:  
(a) vacancies, (b) i n t e r s t i t i a l s ,  and (c) subst i tut ionals .  
I n  addition t o  s ingle  a tom imperfections, there  can occur 
(d) associates  (c lusters)  of point defects.  Let us consider 
some of these i n t r i n s i c  defects i n  more de t a i l .  

11-1-1. The Schottky disorder involves the removal 
of an atom from i t s  normal l a t t i c e  s i t e  t o  some place on the 
c rys t a l ' s  surface leaving behind a vacancy. 
compound l i k e  CdS, one i s  required t o  impose a quasi neutral'- 
i t y  condition on the formation of these defects.  Since CdS 
i s  approximately 50% ionic (21), i t  i s  necessary t o  form an 
equal number of cadmium and sulfur  vacancies since the 
removal from the c r y s t a l  of N cadmium atoms would, fo r  
example, leave the c rys t a l ' s  i n t e r i o r  negatively charged and 
i t s  surface posi t ively charged, Hence i n  order t o  preserve 

I n  a binary 

quasi  charge neut ra l i ty ,  N su l fur  
and placed a t  the surface. I n  an 
the formation of  Schottky defects  
equilibrium condition: 

where vcd means a vacancy a t  a Cd 
a t  a su l fur  s i t e .  Application of 

3 

atoms must  a lso be removed 
otherwise perfect  c rys t a l ,  
i s  then given by the 

s i t e  and Vs means a vacancy 
the mass~actdanl18w~ gdrves: 
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where t h e  bracketed quant i t ies  m e  the cmcentrat ions and 
where Ks depends on the temperature. Hence i t  i s  seen from 
equation (2) t ha t  the product of the concentrations of Cd 
vacancies and S vacancies i s  a constant a t  a given tempera- 
t u r e .  Since we are bounded by the quasi-neutral i ty  condi- 
t i on  [vcd] = [V,], we can w r i t e :  

By applying Boltzmann s t a t i s t i c s  i t  can be shown 
(22) tha t  the density of c a W W . o r  sulphup vacancfes: -: 
i n  thermal equilibrium with an otherwise perfect  c r y s t a l  a t  
temperature T i s  given by: 

where I$, i s  the t o t a l  density of l a t t i c e  s i t e s  and Es i s  the 
energy required t o  remove the atom from i t s  l a t t i c e  posi t ion 
and place i t  on the surface. 

* 

In  Appendix A i t  2s shown tha t  the formation of 
Schottky defects  i s  probably not an important e f f ec t  i n  the 
temperature range involved i n  t h i s  invest igat ion (i.e. up t o  
35OoC) . 
3 It one takes in to  account t h a t  the creat ion of Schottky 
defects  r e s u l t s  i n  a change i n  entropy both fo r  geometrical 
reasons and because of changes i n  the v ibra t iona l  frequencies 
of the neighboring a t o m s ,  i t  can be shown (23) t ha t  the 
r igh t  hand s ide of equation should be multiplied by 

which i s  believed t o  be on the order of 103 o r  10 . fac tor  
Y S  
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11-1-2. The Frenkel defect involves the formation of 
a vacancy and an i n t e r s t i t i a l  by removing an atom from i t s  
-A- rrvLural lattice sLte and placlng it in an 4 - t  , , , ,erstitial position. 
The Frenkel defect f o r  cadmi& i s  characterized then by the 
r e  la  t i on  : 

where CdCd means a Cd a tom i n  a Cd s i t e ,  VI means a vacant 
i n t e r s t i t i a l  posi t ion and CdI i s  a Cd atom i n  an i n t e r s t i t i a l  
pos i t  ion . 

Application of the mass-action law t o  equation (5) 
y i e l d s :  

where Kk i s  again dependent upon the temperature. 
reasonably low degrees of disorder however. 

For 

Hence 

If it is assumed tha t  essent ia l ly  a l l  of the Cadmium i n t e r -  
&&ais  atid ;acan&es come f r o m  Frenkel type disorder we can 
wtf te  : 

. ”  

* Assuming s ingle  ionized Cd and S (the ionic  radius of sulfur  
ions i s  roughly twice that  of cadmium) we can neglect the 
formation of anti-Frenkel defects  (sulfur)  
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Again one can apply Boltzmann s t a t i s t i c s  t o  Frenkel disorders 
and obtain 

-"F/ 'kT 
[CdII [Vcdl = %e (9) 

where EF i s  the energy required t o  remove the Cd atom from 
i t s  l a t t i c e  si te and place it in to  an i n t e r s t i t i a l  position. 

* 

Mer, B o p  and Goede (24) have estimated tha t  the 
energy nf formation f n r  Frenkel disorders may be as high as 
3.2 e V  and more recent studies (25) indicate  tha t  it may be 
even as  high 7.3 eV. It i s  seen from Appendix A t ha t  such 
high energies r e s u l t  i n  negligible Frenkel disorder concentra- 
t ions even a t  35OoC. 

11-1-3. The subst i tut ional  disorder i s  one i n  which 
an atom of one type resides i n  a l a t t i c e  s i t e  normally 
intended to  house an atom of the other  type. 
be noted t h a t  it i s  f e l t  t h a t  t h i s  disorder i s  l e s s  probable 
than Frenkel o r  Schottky disorders because a su l fur  vacancy 
and a cidudm i n t e r s t i t i a l  for  example, have the same effecA 
t i v e  charge and hence they would tend t o  repel  one another. 
I f ,  however, subst i tut ional  disorders a re  found i n  CdS one 
would expect t ha t  Cd atoms i n  S s i t e s  would be more abundant 
than S atoms i n  Cd sites. There are  two reasons for  th i s .  
F i r s t ,  it is well  known that  CdS i s  s l i gh t ly  over stoichlo- 
metric i n  cadmium (26). I n  addition, the r e l a t ive  s izes  of 
the Cd and S ions a re  such as  t o  render a su l fur  ion i n  a 
Cd s i te  mechanically unstable 

It should f i r s t  

* As with the case of Schottky disorders,  the r igh t  hand side 
of equation 9 should be corrected (23) for  changes i n  the 
entropy by being multiplied by an appropriate f a c t o r y F  which 
i s  suspected of being somewhat smaller than 103. 
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. 11-1-4. Defect associates a re  composed of aggregates 

of point defects which l i e  spa t i a l ly  close enough together t o  
be s”hjec+, +n interaction. 
propert ies  of the component defects. Williams (27), for  
example, has shown tha t  the association of a donor and an 
acceptcr r e s u l t s  i n  sh i f t s  i n  t h e i r  respective energy levels.  
I n  addition, when a donor and an acceptor associate ,  the 
probabi l i ty  of electron t ransi t ions between t h e i r  respective 
energy levels can increase serving t o  enhance the recombina- 
t i on  of f ree  e lectrons and holes (28). 

This interact ion can change the 

With a random dis t r ibut ion of i n t r i n s i c  defects  there  
i s  a ce r t a in  probabi l i ty  t h a t  some of these defects  w i l l  
occupy neighboring s i t e s  thus forming associates  of two, three 
etc .  point defects. With the presence of  forces act ing 
between these defects,  the concentrations of various associates  
w i l l  be d i f fe ren t  (i.e. they w i l l  be la rger  i f  a t t r ac t ive  
forces are present and smaller i f  the forcas  a re  repulsive).  

I f  one considers the case where two point defects D1 
and D2 2 come together t o  form an associate  with an enthalpy 
change AH, according t o  the r e l a t ion  

D1 + D2 3 (D1D2) + AH, (10) 

it can be shown (29) tha t  fo r  the case where only one type 
o f  associate  i s  present (e.g, D1 and D2 nearest  neighbors) 
and where the t o t a l  number of point defects  o f  each specie 
remains constant 

where the brackets denote f r ac t iona l  concentrations and the 
factor  y12 depends upon the entropy change. Since only one 
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type of associate  i s  present, 

8 

where m i s  some constant, l e t t i n g  ID21 t o t a l  = m [D1ltotal, 
and looking a t  the point a t  which ha l f  of the defects  D1 
are associated, equation (11) becomes: 

Clearly then, the point a t  which half  of the defects  D1 are  
are  associated s h i f t s  t o  higher temperatures as  [D1] 
increases. 

The var ia t ion of the f ree  and associated concentra- 
t ions  with temperature can be seen by considering t h e i r  behav- 
i o r  a t  high and low temperatures. Consider for  simplicity the 

case fo r  which m = l  (i.e. where [DlItotal = [ D 2 1 t o t a ~  
A t  high temperatures most of the imperfections a re  dissociated 
and equations (12) can be wri t ten.  

= [D]. 

Under t h i s  condition equation (11) becomes 

The logarithm of the associate concentration increases l i nea r ly  
with increasing 1/T. 

A t  low temperatures, associat ion i s  e s sen t i a l ly  com- 
plete .  Hence. 
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This yields:  

(17) 1 AH In [Dl] = In  !D2] = 7 (ln[D] + I n  vI2 - 

I n  t h i s  case, the logarithm of the concentration of f ree  
defects  decreases l inear ly  with increasing l/T but with half  
the slope of the previous case. 

Several authors have already explained experimental 
r e s u l t s  i n  terms of native defect associates.  Niekisch (18) 
has a t t r ibu ted  a trapping leve l  lying 0.22 eV below the con- 
duction band t o  an associate of two sulfur  vacancies and a 
centre  lying somewhere between 0.8 and 1.8 eV t o  a vcdvs 
complex. Nicholas and Woods (7) have suggested tha t  a 
trapping l eve l  lying 0.83 e V  below the conduction band i s  
due t o  a complex aggregate of point defects. Woods (5) and 
Skarman (13) have at t r ibuted a trapping leve l  which gives 
rise t o  a TSC peak between 330°K and 34OoK t o  a vcdvs associate.  

One possible force between defects  a r i s e s  from the 
p a r t i a l l y  ionic  bonding of CdS. One expects, for  example, 
t ha t ,  because of the Coulomb interact ion,  a su l fur  vacancy 
and a cadmium vacancy-having a posi t ive and a negative charge 
respectively-would associate with some f a c i l i t y  whereas two 
cadmium vacancies-or two sulfur  vacancies would have to  over- 
come a repulsive force i n  order t o  associate .  I n  accordance 
with t h i s  force the possible pa i r s  of nat ive defects  i n  CdS 
a re  l i s t e d  i n  Table I where they a re  qua l i t a t ive ly  c l a s s i f i ed  
according t o  t h e i r  electrical and geometrical s t a b i l i t y .  The 
c r i t e r i a  fo r  t h i s  c l a s s i f i ca t ion  a re  based on a model of 
singly ionized atoms. Because of the large s ize  of the su l fur  
i n t e r s t i t i a l ,  any associate involving i t  w i l l  f a l l  i n t o  the 
geometrically unstable category. 
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Elect.  Stable Elect. Unstab; Elect. .Stable "Eledt. %Unstab. 
Geom. Stable Geom. Stable Geom. Unstab, Geom. Unstab. 

%d vs VcaVca Sf v, Vcd 

CdI 'Cd 's vs 

CdI vs 

CdI CdI CdI 

TABLE I 

Double Defect Associates i n  CdS 

Another driving force fo r  the formation of s table  
associates  a r i s e s  from the binding energies of various mole- 
cu lar  species of cadmium and sulfur .  
the binding energies i n  eV per atom as  a function of the 
number of atoms per molecule for  su l fur  (30) and cadmium.* 

In  f igure 1 are  shown 

I / I / 

Fig. 1. Binding energies ( i n  eV per atom) i n  species 
Xn for:  ( a )  sulfur ;  (b) cadmium. 

* The only two molecular species of  cadmium f o r  which the 
binding energies are known are  Cd2 (00087eV(31)) and Cd,(the 
cohesive energy (32)). 
have intermediate binding energies per a t o m .  

Intermediate associates  presumably 
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For sulfur  (figure la) ,  there  i s  a large binding 
energy f o r  S2.  Hence one might expect i n  CdS c lus t e r s  of two 
sulfur  atoms. In  addition, however, the binding energy per  
atom of  the larger  s u l f u r  molecules ( S 4 ,  S6 and S8) i s  s igni-  
f ican t ly  larger  and therefore one expects t ha t  these in t e r -  
mediate associates  (corresponding t o  c lus t e r s  of cadmium 
vacancies) are  a lso probably found i n  CdS. 

With cadmium ( f igure Ib) the s i tua t ion  i s  somewhat 
different .  
serving a s  an indicat ion t h a t  the Cd2 c lus t e r  i s  not a very 
s table  associate  and therefore w i l l  not be found i n  any 
appreciable concentration a t  room temperature. 
l a rger  energy, however, i s  gained by condensing Cd t o  form a 
metal. 
large enough t o  form col loidal  pa r t i c l e s  - o r  equivalently, 
one expects la rger  c lus te rs  of sulfur  vacancies. 

The binding energy fo r  Cd2 i s  very small thus 

A considerably 

Hence, by t h i s  arguement, one expects cadmium c lus t e r s  

In  order f o r  defect c lus t e r s  t o  dissociate  i t  i s  
necessary tha t  the products of dissociat ion separate v i a  some 
diffusion process. Since c lus t e r s  of defects ,  due t o  t h e i r  
s ize ,  cannot diffuse w i t h  t h e  f a c i l i t y  of s ingle  point defects ,  
i t  seems reasonable t o  assume t h a t  dissociat ion takes place 
by the removal of s ingle  point  defects  ra ther  than by the 
separation of the associate i n to  two or  more subc3uste~s. .  
For example, a c lus t e r  of four su l fur  vacancies would probably 
dissociate  a t  

v +  
s4 

o r  even by 

v -  
s4 

lower temperatures by the transformation 

v + v .  
s3 s1 

s1 

rather  than by 
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because the V c lus t e r s  cannot readi ly  diffuse.  As a con- 
sequence of these arguments,: i t  seems possible tha t  the 
dis smiat i sn  ef defect associates may we11 be a source of  
s ingle  point defects  which, due t o  the lower binding energies 
involved, i s  operative a t  lower temperatures than e i the r  the 
Frenkel o r  Schottky mechanism. 

s2 

11-2. Levels i n  the Forbidden Gap. 

It is w e i i  known that the presence of native defects 
and impurit ies i n  a semiconducting o r  insulat ing c r y s t a l  i n  
general give rise t o  localized electron energy levels  which 
l i e  i n  the band gap ( 3 3 ) .  For the discussion of photo-electri-  
c a l  propert ies  of the crystal ,  these leve ls  can be d iv ided  

in to  three groups ( 3 4 ,  3 5 ) :  electron t raps ,  hole t raps  and 
recombination centres.  
energy leve l  a t  which an electron has a higher probabi l i ty  of 
being thermally excited into the conduction band than of f a l l -  
ing in to  a hole i n  the valence band. Similarly, a hole t r ap  
i s  a l eve l  a t  which a captured hole has a higher probabi l i ty  
of being thermally excited in to  the valence band than of 
meeting a conduction electron. 
then a leve l  a t  which recombination i s  more probable. 

An electron t rap  i s  defined as an 

A recombination centre  i s  

The d i s t inc t ion  between these groups of leve ls  can be 
made by considering the demarcation levels ,  Dn and D 
2) defined by Rose ( 3 5 )  i n  the following manner. Consider 
a d is t r ibu t ion  of  energy leve ls  a l l  of the same c l a s s  - i .e .  
a l l  having the s a m e  capture cross sections for  e lectrons Sn 

Sn and and the same capture cross sections fo r  holes S 
S may be different .  The demarcation l eve l  f o r  e lectrons 
Dn f o r  t h i s  c l a s s  of levels  i s  defined as a value of energy 
a t  which, i f  there  i s  an electron,  the electron has an equal 
probabi l i ty  of being thermally driven in to  the conduction 
band and of f a l l i n g  in to  a hole i n  the valence band, The 

(f igure 
P’ 

P O  
P 
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hole demarcation l i n e  D i s  
s imilar ly  a value or' energy 
a t  which ¶ if there e x i s t s  an 

energy level, holes suffer  an 
equal probabi l i ty  of being 
thermally driven i n t o  the 
valence band and of par t ic ipat-  
i n g  i n  recombination. Clearly 
then, f o r  t h i s  class o f  levels, 
e lec t ron  t raps  then l i e  between 
Ec and Dn and hole t r aps  
between D and e V  and the re-  
combination centres  are those 
leve ls  which l i e  between Dn and 
D 

P 

P 

P'  

Conduction Band 
- 

- Recombination Centres 

P -  Hole Traps 
Valence Band V 

It can be shown (35) t h a t  the demarcation levels obey 
the r e l a t ions  

nSn 

sP 
Ec - D = E, - Efn + IcT In --- n 

where E f n  and E 
and holes respectively,  defined by: 

a r e  the quasi-Fermi leve ls ,  :or e lectrons 
fP 

n = N,(T) exp - Ec'Efn 
kT 

p = Nv(T) exp - " g v  

where Nc(T) and Nv(T) a re  the e f fec t ive  dens i t i e s  0 2  s t a t e s  
i n  the conduction and valence bands respectively and are 
functions of temperature and the e f f ec t ive  mass, 
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Equations (18) reveal tha t ,  t o  a f i r s t  approximation, 
( fo r  nSn within a few orders of magnetude of pS 
temperature) the demarcation levels  l i e  very close t o  the 
quasi-Fermi levels .  Hence one can of ten think of e lectron 
t r aps  as  those levels  occuring between E, and Efn, hole t raps  
as those lying between E and Ev and recombination centres  
as being the levels  between the quasi-Fermi levels.  As a 
consequence, it i s  seen that  by changing the f ree  c a r r i e r  
concentrations - perhaps by changing the l i g h t  in tens i ty  
i n  the case of a photoconductor - i t  i s  possible t o  a l t e r  
the r e l a t ive  densi t ies  of recombination centres  and trapping 
levels .  For instance an increase i n  l i g h t  in tens i ty  would 
increase n and p thus spreading the quasi-Fermi leve ls  and 
essent ia l ly  converting any energy levels  over which they have 
passed from t raps  in to  recombination centres.  

and T S  room 
P 

* 

f P  

There are several  reasons t o  believe tha t  the level  
d i s t r ibu t ion  near the c rys t a l ' s  surface i s  d i f fe ren t  from 
t h a t  i n  the bulk. For one thing, the periodic poten t ia l  of 
the l a t t i c e  ceases t o  exis t  of the surface. According t o  
Tamm ( 3 6 ) ,  t h i s  interuption i n  per iodici ty  alone can in t ro-  
duce levels  i n  the forbidden zone. I n  addition, there  a re  
always present layers  o f  adsorbed impurity atoms obtained 
from the surrounding atmosphere which can combine chemically 
with the host atoms t o  form en t i r e ly  d i f fe ren t  compounds, 
such as CdO fo r  example, near the surface. S t i l l  another 
source of surface s t a t e s  i s  the f ac t  that  many of the host 

* For a given temperature and given f ree  electron and hole 
concentrations, the quasi-Fermi leve ls  a re  fixed. It i s  
c l ea r  from equations (18) tha t  there  a re  as many s e t s  of 
demarcation levels  (D ., D .) a s  there  are  c lasses  of 
leve ls  (Sni, S .) preghnt PA the  c rys ta l .  P= 
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atoms are  misplaced a t  the c rys t a l ' s  surface resul t ing i n  
considerable disorder there. Bardeen (37) has t reated the 
case where the number of  surface s t a t e s  i s  comparable with 
the number of surface atoms and has pointed o u t  t ha t ,  depend- 
ing on the s t a t e  of occupancy of these levels ,  there  can be 
a boundary layer  between the surface and the bulk due t o  
charging of the surface, Because of these argument's, one 
has l i t t l e  reason t o  expect t ha t  the photo-electrical  
properties of the surface are similar t~ thiise of the c r y s t a l ' s  
i n t e r i o r  and, u n t i l  more quant i ta t ive work i n  the f i e l d  
of surface s tudies  has been done, one cannot completely ru le  
out the surface as  a source of ce r t a in  experimental resu l t s .  

11-3 Spectral  Response of Photoconductivity and Conductivity 
Glow Curves . 

There e x i s t  many experimental methods by means of 
which one can invest igate  the l eve l  d i s t r ibu t ion  i n  the for-  
bidden gap. Examples include luminescence, absorption s t u d i e s ,  
rise and decay t i m e s  o f  photoresponse, methods of a l ternat ing 
l i g h t  exci ta t ion,  infrared and thermal quenching of photo- 
currents ,  spectral  response of photoconductivity and the so- 
cal led conductivity "glow" curves. Of these methods, among 
the most economical-in terms of experimental f a c i l i t y  versus 
information yield-are the, last  two. 
reason tha t  these two  experimental approaches were used i n  
t h i s  investigation. 

It is  primarily Ifor t h i s  

11-3-1. The spectral  response of photoconductivity 
i n  CdS i s  of ten discussed i n  terms of ex t r in s i c  photoconduc- 
t i v i t y  o r  i n t r i n s i c  photoconductivity depending on whether 
the wavelength of the excit ing l i g h t  used corresponds 
respectively t o  l e s s  o r  more energy than tha t  of the band 
gap (2 ,4 eV a t  room temperature) 
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I n  the ex t r ins ic  r angq the  photon induced electron 
t rans i t ions  which r e su l t  i n  photoconductivity take place 
primarily between levels  i n  the forbidden gap and the con- 
duction band. 
s i c  t rans i t ions  covered by the spec t ra l  response curves obtain- 

Figure 3 shows the approximate range of extr in-  

ed i n  t h i s  invest igat ion,  
spec t ra l  response information 
about changes i n  the free  carrier 
l i fe t ime.  This i s  indicated by a 
p a r a l l e l  s h i f t  t o  higher o r  lower 
photoconductivity of the e n t i r e  
ex t r in s i c  portion of the curve. 
I n  addition, however, one can 
obtain information about the 
changes i n  the l e v e l  d i s t r i -  
bution i n  the covered range as 
indicated by the appearance o r  
disappearance o f  peaks i n  the 
ex t r in s i c  spectral  response. 

One can 

I n  order to  appreciate the 
exc i ta t ion  t o  the invest igat ion of 

obtain from the ex t r in s i c  

Conduction Band 
0 . OeV7----------' 

Covered 

Valence Band 

1.8eV 

Figure 3 .  

relavency of i n t r i n s i c  
l eve l  d i s t r ibu t ions  it i s  

necessary t o  appeal t o  absorption s tudies  of CdS, 
has investigated the absorption of v i s i b l e  l i gh t  i n  "clean" 
CdS s ingle  c rys t a l s  with the r e su l t  t h a t  the absorption 
coef f ic ien t  for  X<500 IW i s  approximately 10 cm" while f o r  
X>520 w i t  i s  l e s s  than 1 cm" a t  room temperature. 
means t h a t  fo r  ~(500 rqr the in t ens i ty  of the transmitted 
l i g h t  has dropped t o  l / e  i t s  value a t  the surface within 
10-5cm. of the surface leaving a major par t  of the c r y s t a l ' s  
bulk i n  the dark. 
e lectrons a t  room temperature i s  10-6cm. (Appendix B), many 
of the electrons l iberated with i n t r i n s i c  l i g h t  have an 
opportunity t o  co l l ide  with surface imperfections. 

Dutton (38) 

5 

This 

Since the mean free path for  conduction 

A s  a 
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consequence, the resul t ing e l e c t r a l  measurements are  probably 
strongly affected by the surface propert ies  of the c r y s t a l  
and changes i n  the in t r in s i c  spec t ra l  response can be used as 
a measure of changes i n  these surface properties.  

XI-3-2. Conductivity glow curves* are  useful i n  
They obtaining information about e lectron t raps  i n  CdS, 

derive t h e i r  s t rength as an analyt ic  t oo l  from the f a c t  
t h a t  e lectron t raps  which are f i l l e d  with electrons a t  one 
temperature w i l l  empty the i r  e lectrons in to  the conduction 
band a t  some higher temperature where t h e i r  presence w i l l  be 
seen as a t ransient  increase i n  conductivity. Experimentally, 
t h i s  i s  effected i n  t h e  following manner., The c r y s t a l  i s  
cooled t o  a low temperature and i r rad ia ted  with l i gh t .  
serves the purpose of f i l l i n g  many of the t raps  (i .e.  the 
electron quasi-Fermi level  i s  moved closer  t o  the conduction 
band), Having f i l l e d  these t raps ,  the exci t ing l i g h t  i s  
removed and the c r y s t a l  i s  heated i n  the dark a t  a uniform 
rate. 
peaks provided the heating r a t e  i s  not too  slow (39). 
the temperature a t  which a peak i s  seen one can obtain an 
estimate of the energetic locat ion of the t rap,  as  discussed 
below, and the area beneath the peak provides one with the 
densi ty  of the t r ap  as  shown i n  Appendix C. 

This 

A p lo t  of conductivity versus temperature can exhibi t  
From 

I n  pr inciple ,  one glow curve provides enough infor-  
mation t o  determine the trapping spectrum over which the 
electron quasi-Fermi level  has passed during heating. I n  
prac t ice ,  the analysis of the data can be qui te  complicated. 
Many theore t ica l  methods have been suggested (39-51) f o r  

* I n  the l i t e r a t u r e  these a r e  sometimes referred t o  as 
thermally stimulated currents (TSC) o r  thermally induced 
currents  (TIC) e 
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dealing with the data, most of which discuss a model, Figure 
4 ;  irivsiving a s ingle  group of t raps  lying a t  an energy 4~ 
beiow the coridiictioil band h~vi r ig  
a thermal emptying probabili ty 
characterized by 

Cond. Bd. AEPaq 
t sr 

a = u* expaE’kT 
where a* i s  the so-called 
attempt to  escape frequency. 
I n  addi t ion these t raps  have 
a f i l l i n g  mechanism governed 

B = StVth 
by Figure 4 .  

where St i s  the capture cross-section fo r  e lectrons and Vth 
i s  the thermal ve loc i ty  of conduction electrons.  The s imples t  
models a l so  include some recombination process governed by 

where Sr i s  the capture cross-section fo r  e lectrons of the 
recombination centre .  The r e l a t ive  magnetudes of the capture 
cross-sections St and Sr are  important. 
i s  much smaller than Sr no appreciable retrapping of e lectrons 
w i l l  occur and hence once an electron i s  freed from the t r ap  
i t  w i l l  contribute but once t o  the conductivity a f t e r  which 
it w i l l  f a l l  i n t o  a recombination centre  and recombine with 
a hole. 
f a s t  retrapping occurs and the electron may wel l  contr ibute  
t o  the conductivity more than once. As a r e su l t  of t h i s ,  
glow curve theories  often represent one of three special  
cases: (a) St<<Sr (monomolecular recombination), (b) StzSr, 
(c) St>>Sr ( f a s t  retrapping). 

For example, i f  St 

I f ,  on the other hand, St i s  much larger  than Sr, 

One of the f irst  theories  of glow curves was pro- 
posed by Randall and Wilkins (40) which involved the 
simplifying assumption that  B = 0. The r e s u l t  w a s  a semi- 
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empiracl expression for  t rap depth i n  terms of the temperature 
Tm of the glow peak: 

AE = 25 kTm 

Later theoret ical  invest igat ions of &er, Oberlgnder 
and Voigt (39) showed, on a more rigorous basis ,  t ha t  not 
only i s  equation (20) sat isfactory for  e = 0, but a l so  the 
Randall-Wilkins r e su l t  can be of ten used t o  find t r ap  depths 
t o  within + - 4 k Tm even when f a s t  retrapping occurs. 

It i s  w e l l  known (52) tha t  the posi t ion of the glow 
maximum i s  somewhat dependent upon the heating r a t e  i n  a 
fashion such tha t  higher heating r a t e s  correspond to  higher 
temperatures of the glow peak. However, above the c r i t i c a l  
heating r a t e ,  over a range of heating r a t e s  from 0.1 t o  
l.OCo per sec., the deviation of the current maximum has been 
shown to  be less than 6% i n  copper doped and cobalt  doped 
CdS (39). 

As a consequence of these considerations, the Randall- 
Wilkins r e s u l t  i s  f e l t  t o  give reasonably adequate estimations 
of the t r ap  locations and hence i t  w i l l  be used here. 
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CHAPTER I11 

EXPERIMENTAL 

111-L Description of  Equipment 

The vacuum system (Figure 5) i s  composed of an a l l  
s t a i n l e s s  steel tank, approximately 25 l i t e rs  i n  volume, 
provided with Varian con-flat  flanges containing e l e c t r i c a l  
and mechanical feedthroughs and two glass  viewing ports.  
Upon assembly, the system w a s  thoroughly cleaned i n  accord- 
ance with the procedure recommended by Varian (Appendix D). 
The pumping system includes a Varian Vac-Sorb forepump, 
model #941-5610, by means of which a vacuum of 5 x 
can be reached, and a Varian 125 l i t e r  per second Vac-Ion 
pump, model #911-5417, which, after discontinuing fore  
pumping by sealing o f f  the system from the forepump, could 

The Vac-Ion pump could be baked out with the accompanying 
Varian In te rna l  Heater, model #924-0029. The pressure i n  
the region of the c rys t a l  w a s  measured by means of a Varian 
ionizat ion gauge, model #97 1-0003, 

t o r r  

be s t a r t ed  and, with baking, produced vacua below 10 - 10 t o r r .  

The c r y s t a l  holder ( f igures  5 and 6) i s  a copper 
block which can be heated o r  cooled from the outs ide of the 
vacuum system. 
through a hole i n  the  copper block and i n t o  the photocell, 
RCA 926. 
in tens i ty .  The c r y s t a l  holder i s  completely surrounded by 
a copper cup which i s  i n  thermal contact with the copper 
block. The function o f  the cup i s  t o  expose the c r y s t a l  
t o  a heat source (or sink) on a l l  sides when i t  i s  being 
heated (or  cooled) so as to  minimize temperature gradients .  

Light transmitted by the c r y s t a l  passes 

This affords a means of control l ing the l i g h t  

20 
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i n  the c rys ta l .  
emptying i n  the case of TSC curves and t o  eliminate disturbances 
from the Seebeck ef fec t .  I n  the side of the copper cup are  
t w o  holes which allow the incident  l i g h t  t o  f a l l  upon the 
c r y s t a l  and the transmitted l i g h t  t o  pass t o  the photocell. 
These can be covered by means of copper shut ters  (not shown) 
which are  operated by a Varian ultra-high vacuum rotary feed- 
through, #954-0026. 

This i s  necessary to  assure homogeneous t r ap  

Another purpose served by the copper cup, shut ters  and 
grounded screen (Figure 5) i s  t ha t  they shield the c rys t a l  
from bombardment by ions i n  the residual  gas i n  the vacuum 
system which are  formed when the Vac-Ion pump i s  i n  the glow 
discharge stage of pumping (at pressures higher than 
This t rans ien t  stage,  las t ing approximately one minute, i s  
passed through during pumpdown. 

Torr). 

The c r y s t a l  p l a t e l e t  (of approximate dimensions 

ohm-cm) mica which l i e s  on the copper 
1Omm. x 5mm. x 0.05mm.) i s  mounted on a th in  s lab of high 
r e s i s t i v i t y  
block. 
mica springs. The copper leads are  suf f ic ien t ly  thick so 
a s  not t o  bend under the tension of the mica springs a t  
elevated temperature s o  

The c r y s t a l  i s  held i n  place by the pressure of the 

The temperature of the c r y s t a l  was measured v i a  two 
copper-constantan thermocouples i n  conjunction with a 
Minniapolis-Honeywell Rubicon potentiometer model #2745. 
These thermocouples were located a t  two d i f fe ren t  places 
on the copper block and were separated from the block by 
a piece of mica equal  i n  thickness to  tha t  upon which the 
c r y s t a l  lay. Preliminary t e s t s  showed the thermocouples, 
t o  read within l C o  of each other  over a wide range of temper- 
a tures  hence indicat ing that  the heating was homogeneous 
over the block and t h a t  the c r y s t a l  temperature w a s  very 
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nearly tha t  of thermocouples. 

Figure 7 i s  a schematic diagram of the op t i ca l  and 
e l e c t r i c a l  measurements system. Monochromatic l i g h t  i n  the 
v i s i b l e  range w a s  provided by a Bausch and Lomb grat ing 
monochromator #33-86-25-02 with accompanying tungsten l i g h t  
source #33-86-37-01. 
the manufacturer i s  approximately ha l f  in tens i ty  a t tenuat ion 
a t  - + 5 millimicrons fo r  the s l i t  se t t ings  used: input 1.35mm, 
output 0.75mm. The output of the monochromator i n  photons 
per second a s  a function of wavelength i s  shown i n  Figure 8 
(curve 111). This was calculated from data furnished by the 
manufacturer on the t o t a l  energy output a s  a function of 

upon the c r y s t a l  w a s  determined experimentally and the 
r e s u l t s  a re  shown i n  figure 8 (curve 7'12). 

The spectral  pur i ty  as  specified by 

wavelength. The number of photons per cm. 2 -see. incident  

An e l e c t r i c  motor was attached t o  the monochromator 

The 

by means of which the v is ib le  spectrum could be scanned a t  a 
rate of 20 m p  per  hour from long t o  short  wavelengths. 
spectrum was  scanned from long t o  short wavelengths because, 
for  the c rys t a l s  used  i n  t h i s  experiment, the r i s e  time of 
photoconductivity w a s  much shorter  than the decay time a t  
room temperature, Since, as noted i n  section 11-3-1, the 
absorption coeff ic ient  of CdS i s  considerably higher i n  the 
short  wavelength region than i n  the long wavelength region, 
one can achieve steady s ta te  photocurrents more rapidly by 
sweeping i n  the direct ion of increasing absorption, 

The current  through the c r y s t a l  was measured by means 
of a Keithley 413-A log scale micro-microammeter. 
accuracy as specif ied by  the manufacturer i s  within + 0.2 
decade 

The 

- 

In  order to  obtain an accurate measurement of the 
conductance of the bulk of the c r y s t a l  - i .e .  t o  eliminate 
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the e f f e c t s  of ba r r i e r  layers  (53) a t  the current e lectrodes 
a four electrode method w a s  used. 
i L L L L = L  elrctrcdes were p r ~ b e d  by ~eai'rs 32 ttto Keithley 500-A 
electrometers which have an in t e rna l  res is tance of 10 ohms 
and accuracy to  within 2% f u l l  scale.  

The voltages a t  the two 

14 

The electrodes were evaporated onto the unheated 
c r y s t a l  i n  vacuo below t o r r ,  Crystal  111 wore gold 
electrodes,  Gold, although i t  does not make an ohmic contact 
with CdS, was used because of i t s  a b i l i t y  to  withstand high 
temperatures without changing i t s  propert ies  and because gold 
does not  readi ly  diffuse i n t o  CdS. 
chromium electrodes.  The chromium was added i n  an attempt t o  
increase the mechanical s t a b i l i t y  o f  the electrodes against  
being scratched by the copper leades as  they expand and con- 
t r a c t  during heating and cooling. 

Crystal  #2 wore gold- 

The current  through the c r y s t a l  and the two probed 
voltages w e r e  continuously monitored by three Leads & Northrup 
Speedomax H char t  recorders. These were cal ibrated so a s  t o  
agree within 1% with the scale  readings of the respective 
instruments driving them. 

A l l  e l e c t r i c a l  leads were shielded cables with the 
shielding grounded. 

In  addition to  the two c rys t a l s  reported on here, 
several  other  c rys t a l s  have been investigated.  

111-2 Experimental Procedure 

As w a s  indicated i n  the preceeding section, i n  order 
t o  a t t a i n  a vacuum of 10-l' t o r r  the system must be baked 
out. 
t o r r .  
t o  keep the pressure i n  the system w e l l  below 

Without baking the pressure does not drop below 
The bakeout temperature i s  increased i n  such a way as  

t o r r  i n  
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order t o  avoid gas discharge i n  the vacuum system. 
a temperature of  35OoC i s  reached both i n  the w a l l s  of the 

maintained fo r  several  hours. 
vacuum system, baking out a t  35OoC serves the purpose of 
destroying the v i rg in i ty  of the c rys ta l .  
t h a t  CdS c rys t a l s  i n  the v i rg ina l  s t a t e  of ten exhibi t  a very 
d i f fe ren t  photoconductive behavior than they do i n  subsequent 
experiments. Since it i s  not the purpose of t h i s  experiment 
t o  study the t rans i t ion  from v i rg ina l  t o  heat t reated s t a t e s ,  
but ra ther  t o  study the e f fec ts  of fur ther  heat treatments 
on heat t reated crystals ,  i t  i s  of benefi t  t o  annihi la te  as  
much of the h is tory  (i .e.  surface impurit ies e tc . )  of the 
par t icu lar  c rys t a l  as  possible. 
bakeout. 

Ultimately 

..-3-*.. v a , . . u ~ u  a p t e m  and in the crystal, 2nd t h i s  tezyerature is 

I n  addition t o  outgasing the 

It i s  well known 

This i s  accomplished during 

The heat  treatment cycle consis ts  of the following 
s teps ,  Following the 35OoC bakeout, the c r y s t a l  i s  annealed 
from 350°C t o  room temperature i n  a prescribed fashion. 
Figure 9 i s  a p lo t  of temperature versus time for  the anneal- 
ing process. 
experiments indicated a noticeable change i n  defect s t ructure  
occuring between 150°C and 200°C heat  treatments. 
much of the annealing t i m e  w a s  spent i n  t h i s  region. 

This par t icular  curve was chosen because i n i t i a l  

Hence 

After annealing, a spec t ra l  response curve i s  obtained 
a t  room temperature. Following the spec t ra l  response measure- 
ment, the c r y s t a l  i s  i r rad ia ted  with 510 m p  l i g h t  for  a period 
of 30 minutes a t  room temperature. 
cooled t o  l i q u i d  nitrogen temperature and i r r ad ia t ion  i s  
continued there for  20 min. The reason for  i r r ad ia t ing  the 
c r y s t a l  while i t  i s  s t i l l  a t  room temperature i s  tha t  i t  has 
been found (54) tha t  i n  CdS there  a re  ce r t a in  t raps  which 
w i l l  not be f i l l e d  i f  the c r y s t a l  i s  i r rad ia ted  only a t  
l i q u i d  nitrogen temperature. This i s  due, it i s  suspected, 

The c r y s t a l  i s  then 
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. t o  the presence of a repulsive poten t ia l  ba r r i e r  around these 
t raps  which the electron, a t  l i q u i d  nitrogen temperature, 
uuG.3 r,ot h2-w suf f ic ien t  eaergy t o  sum*uat. Imedia te ly  
a f t e r  the 50 minute trap f i l l i n g ,  the l i g h t  i s  switched off  
and a conductivity glow curve i s  run a t  a heating r a t e  of 0.32 
centigrade degrees per second up to  lQO°C. 
the  current  and voltages are  continuously monitored. 

During t h i s  time 

The c r y s t a l  temperature i s  then held a t  100°C. for  
one hour t o  i n s t i l l  equilibrium i n  the thermal defect sub- 
system. 
cooled t o  room temperature. The rapid cooling i s  intended 
t o  freeze i n  the disorder incurred during the 100°C heat  
treatment. Following t h i s  freezing-in,a room temperature 
spectral  response and a glow curve a re  obtained - the  TSC 
curve going t o  15OoC. 

The c r y s t a l  i s  then rapidly ( a t  a r a t e  of 1.2Co/sec.) 

Once a t  150°C,the c r y s t a l  i s  heat t rea ted  f o r  one 
hour and rapidly cooled to room temperature. 
by a spec t ra l  response measurement and a glow curve t o  

This i s  followed 

200OC. 

This pat tern i s  repeated with heat treatment temper- 
a tures  increasing i n  5OoC steps u n t i l  f i n a l l y  a spec t ra l  
response curve and a TSC curve a re  obtained a f t e r  a 35OoC 
heat  treatment 

The c r y s t a l  i s  then annealed as s ta ted  above and the 
e n t i r e  cycle i s  repeated i n  order t o  ver i fy  reproducibi l i ty .  

I $;f---yp 

Two more cycles are run which d i f f e r  from those 
described above only i n  that  the l i g h t  used t o  f i l l  the 
t raps  f o r  the glow curves i s  weakly absorbed ex t r in s i c  l i g h t  
of 65- wavelength as  opposed to  the strongly absorbed 
51Oq.i l i g h t ,  
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. Finally the i n i t i a l  program with 51M trap f i l l i n g  
i s  repeated a s  an additional check on the long term e f f e c t s  
of heat -treatments. 



CHAPTER IV 

EXPERIMENTAL RESULTS 

Seven heat treatment-annealing cycles,  as  described 
inLShapter  111, were run on c r y s t a l  #l and three on c r y s t a l  
7r '2.* There vas c=nsiderable r e p r e d u c i b i l i t y  i n  the results 
of these cycless I n  section I V - 1 ,  the r e s u l t s  of representa- 
t i v e  cycles a re  given. In section I V - 2 ,  changes i n  the 
spec t ra l  response curves and TSC curves fo r  c rys t a l  #1 which 
took place over a period of 8 months guring which the pressure 
never rose above 5 x 10-lOtorr)  a re  given. 

The data i s  presented i n  terms of current  ra ther  than 
conductance because occasionally the voltage difference 
between the two inner electrodes w a s  too small t o  be accurately 
measured, It i s  f e l t ,  however, t ha t  t h i s  does not subtract  
s ign i f icant ly  from the va l id i ty  of the r e s u l t s  since the 
appearance of and trends i n  the conductance curves, when 
they could be accurately measured, c losely resembled those 
of the current  curves. The points are  replot ted from curves 
obtained on the recorders and represent less than 20% er ror .  

For the sake of  brevity the curves a re  referred t o  

For example the 3OO0C spec t ra l  response (or glow) curve 
by the heat treatment temperature a f t e r  which they were obtain- 
ed, 
obtained a f t e r  heat  treatment a t  3OO0C. 

I V - 1  Representative Cycles, 

IV-1-1.  The spectral  response curves obtained from 
three typ ica l  cycles a re  shown i n  f igures  10, 11 and 12, 
%A l imit ing factor  fo r  the number of experiments per c r y s t a l  
was the durabi l i ty  of the e lectrodes,  Thermal expansion and 
contraction of the wires contacting: these electrodes caused 
them t o  be scratched away r e s u l t i n i  i n  poor contacts ,  

31 
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Figure 10 i s  f o r  c r y s t a l  #l and figures 11 and 12 f o r  c r y s t a l  
#2, It was observed i n  both c rys t a l s ,  and i n  others not 
reported on here, t ha t  the photocurrent suffered e s sen t i a l ly  
a p a r a l l e l  s h i f t  toward higher currents with increasing heat 
treatment temperature without the appearance of any new peaks 
i n  the ex t r in s i c  range, 
the increase i n  the photocurrent w a s  more pronounced i n  the 
region of ex t r in s i c  exci ta t ion than i n  the i n t r i n s i c  range. 
The exception t o  t h i s  i s  found i n  c r y s t a l  #i where, upon hest 
t r ea t ing  a t  35OoC, the increase i n  i n t r i n s i c  photocurrent was 
notably grea te r  than the ex t r in s i c  increase i n  a l l  of the 
seven cycles t o  which t h i s  c r y s t a l  w a s  subjected. The anneal- 
ing process used here fa i led t o  reverse t h i s  i n t r i n s i c  
increase. 

It i s  a l so  seen from the f igures  t h a t  

Heat treatments a t  100°C produced no appreciable 
change i n  the experimental r e s u l t s  and hence room temperature 
and 100°C curves a re  shown as one. 

I V - 1 - 2 .  Figures 13, 14 and 15 a re  the glow curves 
obtained fo r  the three cycles respectively whose spec t ra l  
responses are given above. Figures 13 and 14 are  510 IW 
f i l l e d  g1ot.i. curves fo r  c rys ta l s  #l and #2 respectively.  
Figure 13 i s  a set  of 650 ~Q.L f i l l e d  glow curves fo r  c r y s t a l  
#2. The t r ap  dens i t ies  have been calculated using the 
r e s u l t s  o f  the analysis  i n  Appendix C and are l i s t e d  i n  
Table 11. 
toward higher currents  with increasing heat treatment 
temperature, 

A l l  of  these glow curves exhibi t  a p a r a l l e l  s h i f t  

Crystal  81 (figure 13) shows two broad current 
maxima a t  approximately 200°K and 44OoK. These were very 
insens i t ive  t o  f i l l i n g  wavelength i n  t h a t  the 650 rq~ f i l l e d  
glow curves exhibited exactly the same s t ruc ture  and changes 
a s  the 510 r q ~  f i l l e d  ones, Up t o  3OO0C heat treatments, 
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there  appeared i n  t h i s  c rys ta l  very small, i f  any, growth of 
peaks, 
decrease i n  the 200% peak and an increase i n  the 440% peak. 

However, upon heating a t  35OoC, c rys t a l  #1 showed a 

I n  c rys t a l  $12, a p a r a l l e l  s h i f t  i s  qui te  apparent i n  
the  510 rq-l f i l l e d  glow curves ( f igure 14). I n  addition, how 
ever, there  appears t o  be a pronounced growth of the broad 
peak a t  approximately 200°K. This e f f e c t  w a s  reproducible 
iii c r y s t a l  82 ( ips ,  this peak cculd be annealed out and 
regrown by heat t reat ing)  but was not observed i n  c r y s t a l  fl, 
Quite apparant i n  these glow curves a re  two peaks a t  350°K 
and 385OK, 
Growth of the peak a t  44OoK becomes evident a f t e r  3OO0C heat 
treatment. 
peaks are seen as one peak a t  400°K. 

These two peaks exhibi t  no noticeable growth, 

After  35OoC heat treatment the 385% and 440% 

Another interest ing property of c r y s t a l  #2 was  t ha t  
it showed considerable sens i t iv i ty  t o  the f i l l i n g  wavelength. 
I n  f igure 16 one can see the aforementioned p a r a l l e l  s h i f t  
and some growth of the peak a t  approximately 200°K, 
ably absent however, for  650 q~ f i l l i n g ,  a r e  the peaks a t  
350°K and 38SoK, 

Notice- 

I V - 2 ,  Changes Over Several Cycles 

IV-2-1, Figure 16 shows the changes which occured i n  
the spectral  response curves for  c r y s t a l  $11 over an 8 month 
period during which the c rys t a l  was kept i n  vacuo below 
5 x 10-l' t o r r  and subjected t o  7 cycles. 
the c r y s t a l  spent a t o t a l  of approximately 16 hrs .  a t  35OoC 
and roughly the same amount of time a t  3OO0C, 25OoC, e tc .  
The changes are  characterized by an increase i n  i n t r i n s i c  
photocurrent while the extr insic  photocurrent i s  v i r t u a l l y  
unaffected, This " i r reversible"  change occurred upon heat  
t r ea t ing  the c r y s t a l  a t  35OoC. 

This means t h a t  

The 350°C cuwe was a r b i t r a r i l y  
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chosen t o  represent t h i s  change i n  shape of the spectral  
response f r o m  cycle t o  cycle. 

It w a s  a l so  noticed i n  c rys t a l  81 tha t ,  over the 
course of these cycles,  the dark current  rose by approximately 
two  orders of magnetude ( i .e .  from to -lO"), 

IV-2-2, Figure 1 7  i s  representative of  the change 
i n  glow cumes over the above mentioned period. 
350°C curve was  chosen as the representative.  
here a reduction i n  the 2OO0K peak and an increase i n  the 
4 4 0 ° K  peak. 
35OoC heat treatments. A similar  t r e n d  was very s l igh t ly  
noticeable i n  c r y s t a l  W2. 

Here too the 
One observes 

This "irreversible" change was also a r e su l t  of 

Invest igat ions presently being made have thus f a r  
shown tha t  CdS c rys t a l s  heat t reated a t  1000°K i n  sulfur  
vapor (1000 t o r r )  fo r  several hours exhibi t  TSC behavior 
very similar t o  t h a t  of  l a t e r  cycles i n  f igure 17 ( i .e .  one 
pronounced peak a t  4 4 0 O K ) .  
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Figure 10. 
Spectral  R e s  onse 
fo r  Crystal  5 11 

Heat Treat. Symbol 
Temp. (OC) 

25-100 0---6 

200 %-x 

*--e 350 

400 450 500 550 600 650 

h ( 4 -  



6 
f l  
I t  Figure 11. 

Symbol 

M 

b -0 

%-x 

x- - x  

U 

*--e 

\ 
0 



n 

37 

Figure 92, 
Spectral R e s  onse 
for Crystal $2 
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Figure 15. 
650 rg_l f i l l e d  g i o w  curves 
fo r  Crystal  #2 
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Figure 16, 
Changes i n  Spectral  
Response over several  
cycles. Crystal  IF1 
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TABLE I1 

TRAP DENSITIES 

The trap densities have been estimated using equation 
(C-11) derived i n  appendix C. 

Figure 13 

Glow Peak Temp . 
Heat Treat Temp. 200% 440% 

l0O0C 1.0 x 10l6 -- 

35OoC 1.6 x 10l6 9.0 x 10l6 

20oOc 1.5 x 10l6 6.4 x lo f6  
3OO0C 2.9 x 10l6 6.3 x 10l6 

Figure 1.4 

Heat Treat. Temp. 200% L s l  G3500K 385OK 44OoK 
Glow Peak Temp . 

20oOc (5x1013 3xio14 2x1014 <io13 

3OO0C 5x1014 1. 6x1Ol4 2 . 5 ~ 1 0 ~ ~  2x1014 

35OoC 5x1014 3 . 4x1014 3. 6x1014 
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TABLE I1 (Contd.) 

Figure  15 

Glow Peak Temp. 
Heat Treat, Temp, 1800K 

l0O0C - 

35OoC lX10l4 

Figure  1 7  

Glow Peak Temp. 

Program 250°K 450°K 

1 3.  3x1Ol6 5x1016 

3 1, 7xI0l6 lx1017 



DISCUSSION OF RESULTS AND CONCLUSIONS 

As w a s  pointed o u t  i n  Section 11-3-1, the f ac t  t ha t  
the spec t ra l  response curves - specif ical ly  i n  the ex t r in s i c  
range - suf fer  a wavelength independent increase i n  photo- 
current  with increasing heat treatment temperature requires 
t h a t  heat treatments r e su l t  i n  an increase of the f ree  c a r r i e r  
l i fe t ime a s  opposed t o  an increase i n  the opt ica l  exci ta t ion 
rate. This i s  evident from the f ac t  t h a t  a wavelength in-  
dependent exci ta t ion ra te  requires a uniform increase i n  the 
e n t i r e  level  dis t r ibut ion over which the spectral  response 
i s  examined. In  addition, because t h i s  p a r a l l e l  s h i f t  occurs 
i n  c rys t a l s  having markedly d i f fe ren t  ex t r in s i c  spec t ra l  
responses, such a uniform increase i n  leve l  d i s t r ibu t ion  
must also necessarily be independent of the leve l  dis t r ibut ion.  
These r e s t r i c t ions  render the suggested increase i n  opt ica l  
exci ta t ion r a t e  qui te  improbable thus in s i s t i ng  tha t  heat 
treatments cause an increase i n  the f ree  c a r r i e r  l i fe t ime.  

In  view of the arguments i n  section 11-1,-one expects 
t h a t  the e f f e c t  of heat treatments, i n  the temperature range 
investigated here, i s  t o  dissociate  defect associates ,  a t  
l e a s t  pa r t i a l ly ,  thus giving r i s e  to  s ingle  point defects.  
The simplest model which can correlate  the dissociat ion of 
associates  with an increase i n  f ree  c a r r i e r  l i fe t ime involves 
the  destruction of associates which a c t  a s  recombination 
centres ,  The reduction in  the recombination centre  density 
causes a decrease i n  the recombination r a t e  thus increasing 
the steady s t a t e  photocurrent. This can be seen by consider- 
ing f igure 4,  Section 11-3-2. I f  one assumes t h a t  recombina- 
t i on  takes place primarily through one specie of centre  

45 
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(via the Y t rans i t ion) ,  the steady s t a t e  r a t e  equation for  
conduction electrons becomes: 

$ = O  

where a i s  the 
the conduction 

= a - Y n(N -n ) R R  

r a t e  a t  which electrons are  being excited in to  
band per sec-cm3 and NR'nR i s  the density of 

recombination centres  available for  e lectron capture. Assum- 
ing fo r  s implici ty  t h a t  most of the recombination centres  a re  
not occupied by electrons (NR =(r nR), the steady s t a t e  e lectron 
concentration becomes : 

a n = -  
YNR 

Hence the steady s t a t e  photocurrent increases with decreas- 
ing NR. 

The f a c t  t ha t  the increase i n  photocurrent i s  less 
i n  the i n t r i n s i c  range than it i s  i n  the ex t r in s i c  range for  
heat  treatments up t o  300°C for  c r y s t a l  #l and up t o  350°C 
fo r  c r y s t a l  #2 i s  explainable i n  terms of a higher density of 
recombination centres  i n  the near surface region than i n  the 
bulk of the crystal .  I f ,  fo r  instance, the e f f e c t  of heat 
treatments i s  t o  destroy a ce r t a in  density of some specie of 
recombination centre  essent ia l ly  uniformly throughout the I 

c r y s t a l  and i f  the density of recombination centres  were some- 
what larger  i n  the near surface region - as one might expect 
(c.f. sections 11-2 and 11-3-1) both from the spreading of 
the quasi-Fermi levels  (due t o  the high i n t r i n s i c  absorption) 
and from the presence of many surface imperfections - the 
resu l t ing  r i s e  i n  i n t r i n s i c  photocurrent would be smaller 
because the percent reduction of recombination centres  per 
cm3 would be l e s s  near the surface than i n  the bulk. 
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The TSC peaks a t  approximately 200°K (-0.4 eV) and 
44OoK (-0.95 eV) which grow t o  concentrations of - 5 x 10 
~ r ? ? - ~ ( F i g u r e  14) car? be ass~clated d t h  the p r n d u c t s  n f  the 
dissociated recombination centres  where, by the arguments i n  
Section 11-1-4, a t  l e a s t  one of these peaks i s  due t o  a 
s ingle  i n t r i n s i c  point defect and the other e i t h e r  a different  
s ingle  point defect o r  a res idual  subcluster. 
ges t s  t h a t  the primary recombination mechanism i n  c rys t a l  #2 
i s  due t o  a defect associate whose density,  by equation 21, 
i s  probably on the order of 1015 since the dissociat ion 
of approximately 1014 (3x11'~ r e s u l t s  i n  a current  change of the 
order of 10%. I f  one assumes tha t  the same associate  was 
responsible . 

14 

This then sug- 

For recombination i n  both c rys t a l s  f l  and #2 then, 
since the photoconductivities of both c rys t a l s  were nearly the 
same (as can be seen by comparing f igures  (10-12)), the recom- 
binat ion centre  densi t ies  must  have been nearly equal. This 
can then explain two features of the behavior of c r y s t a l  #lo 
F i r s t ,  t h a t  the peaks a t  2OO0K and 44OoK exhibited no appre- 
c iab le  growth per cycle i n  c rys t a l  fl i s  due t o  the f ac t  t h a t  
1014 addi t ional  t raps  of these types per cm3 would go unnoticed 
i n  a background concentration i n  excess of 10 . Second, t ha t  
the p a r a l l e l  s h i f t s  with increasing heat treatment temperatures 
were l e s s  i n  c r y s t a l  #1 than i n  c r y s t a l  #2 i s  due t o  the f ac t  
t h a t  the large background densi t ies  6f the products of d i s -  
sociat ion (viz. defects  giving r i s e  t o  the 200°K and 44OoK 
peaks) would impede dissociat ion of the defects  as  can be 
seen from the mass-action arguments i n  sect ion 11-1-4 (equa- 
t i o n  13). As mentioned in  sect ion IV-2-2, experiments cur- 
ren t ly  underway have shown tha t  c rys t a l s  heat  t reated i n  s u l -  
fu r  vapor exhibi t  TSC curves consis t ing almost en t i r e ly  of a 
pronounced peak a t  440°K (>1017cm'3) with the peak a t  200°K 
absent. 

16 

When subjected t o  heat treatment-annealing cykles of 
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the type described i n  t h i s  thes i s ,  the p a r a l l e l  s h i f t s  i n  
photoconductivity were, although present, qui te  small (<lo% 
from 100°C t o  350°C heat treatments) whiie the photoconducti- 
v i t i e s  (i .e.  spectral  response curves) were l e s s  than ha l f  
an order of magnetude lower than those of c rys ta l s  #l o r  #2. 
This behavior i s  i n  agreement with the above proposed explana- 
t i o n  since a large concentration of the 44OoK peak defect,  
by the above arguments would impede dissociat ion and may 
force a s l igh t ly  higher associate concentration. 

An in te res t ing  outcome af the  behavior of c r y s t a l  111 
stems from the f a c t  t ha t  although both the 2OO0K and the 44OoK 
peak defects  were q u i t e  abundant i n  t h i s  c rys ta l ,  the recom- 
b ina t ion  t r a f f i c  w a s  no greater  than fo r  c rys t a l  #2. 
the concentration of each of these defects  was two orders of 
magnitude higher i n  crystal  #l than i n  c r y s t a l  7'12, one expects 
from the mass-action arguments i n  section 11-14 (equation 11) 
tha t ,  i f  only these two defects were needed t o  form the recom- 
binat ion centre ,  the resul tant  equilibrium concentration of 
associates  i n  c r y s t a l  $11 should be four orders of magnitude 
higher than i n  c rys t a l  7'12. 
case,  one i s  led to  conclude tha t  the associate  responsible 
fo r  recombination i s  composed of a t  l e a s t  a th i rd  member - 
which i n  t h i s  experiment i s  undetected - and hence the abund- 
ance of these recombination centres  i s  l imited by the abund- 
ance of t h i s  th i rd  member. 

Since 

Since t h i s  appears not t o  be the 

A lower bound of the electron capture cross  sec t ion  
of the recombination associate can be obtained. From the 
steady s t a t e  r a t e  equation (equation 21) ,  
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Using the values 7 Dc 1o03sec. (equation ~ - 7 1 ,  Vth z 3 x lo7 
cm/sec (equation B-2) and NR=nR ,N 1015 cmW3 one obtains: 

sn N 10- 2o cm2 

A TSC peak a t  approximately 180°K has been ident i f ied  
by several  aothors (5, 13, 14) a s  being due t o  a cadmium 
vacancy on the basis  tha t  it appears when the c rys t a l s  have 
been heat t reated i n  atmospheres of s u l f u r ,  oxygen o r  gallium 
and disappears upon heat  t rea t ing  i n  cadmium o r  vacuo. Since 
the broad 2OO0K peak obtained i n  t h i s  invest igat ion l i e s  i n  
the same energy range and also exhibi ts  the property of 
disappearing a f t e r  heat treatments i n  vacuo (Section IV-2-2) , 
it s e e m s  reasonable t o  assume tha t  the defect responsible f o r  
t h i s  peak i s  a l so  the cadmium vacancy. 

Simultaneous with the i r revers ib le  decrease of the 
200°K TSC peak i s  the increase i n  surface photocurrent and 
dark current. It i s  w e l l  known t h a t  the presence of oxygen 
on the c rys t a l ' s  surface causes a decrease i n  the photocon- 
duc t iv i ty  (55,56) and the dark conductivity (57) and tha t  
baking the c r y s t a l  i n  an oxygen atmosphere can give rise t o  
a TSC peak a t  18OoK (5,13). Conversely then, one expects 
t h a t ,  i f  desorption of adsorbed oxygen layers  i s  present, 
one should observe a decrease i n  the Vcd concentration and 
an increase i n  the i n t r i n s i c  spec t ra l  response and dark cur- 
rent .  Since, i n  an "ion-pumped" system to r r )  which 
has been fore-pumped w i t h  a vac-sorb pump, the la rges t  p a r t i a l  
pressures a re  those of hydrogen and helium - with oxygen 
accounting fo r  l e s s  than 10% of  the residual  atmosphere-(58), 
i t  i s  possible tha t  some replacement mechanism i s  i n  operation 
whereby desorbed oxygen i s  replaced, for  example, by hydrogen - 
which has been shown to  have l i t t l e  e f f e c t  on the spectral  
d i s t r ibu t ion  of photoconductivity of CdS (55). 
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Due to  the f ac t  that  a l l  of the f ive  sulfur  t reated 
c rys t a l s  thus f a r  investigated exhibi t  pronounced TSC peaks 
U L  =+ T7U /s/an°K, ene i s  required to assign to t h i s  peak a defect 
involving the cadmium vacancy - perhaps corresponding to  
some higher order Sn - molecule. 
s ib ly  upon 350°C heat treatments might a l so  be connected with 
the depletion of the 20O0K vcd peak by reasoning tha t ,  a t  
35OoC, the cadmium vacancies have enough thermal energy t o  
overcome t h e i r  mutual ionic repulsion and hence to  associate  
thus forming addi t ional  440% peak defects.  These Sn c lus t e r s  
however are  t i gh t ly  bound a t  35OoC and hence one not ices  a 
decrease i n  t h e i r  number (i .e.  during annealing) only when 
the Vcd and the undetected th i rd  member associate with them 
to  form recombination centres. 

That t h i s  peak grew i r rever -  

The difference between the peak s t ructures  of the 
glow curves f i l l e d  with 510 mp l i g h t  ( f igure 14) and those 
f i l l e d  with 650 nq~. l i g h t  ( f igure 15) i n  c r y s t a l  #2 - viz.  the 
appearance of peaks a t  350% and 385OK i n  f igure 14 - i s  not 
present ly  explainable, A possible explanation i s  tha t  these 
t raps  have small capture cross-sections and hence require a 
long time (longer than 50 minutes) a t  the lower electron den- 
s i t i e s  afforded by weakly absorbed 650 mp l i g h t  t o  become 
not ic ibly f u l l .  Another poss ib i l i t y  i s  tha t  of the presence 
of the so-called photochemical reactions (59-62). These a re  
believed t o  occur even a t  room temperature (62). Experiments 
t o  invest igate  the dependence of t rap  f i l l i n g  on wavelength 
a re  presently being planned. 
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APPENDIX A 

An estimate of the upper bound on the equilibrium 
concentration of  Schottky defects  i n  CdS a t  35OoC can be 
obtained f o r  CdS by considering the melting point: 1748OK 

( 63) 

Cottrell (&.I suggests t h a t  a t  the melting point the 
degree of disorder i s  

-4 n w 1 O  

-2 Allowing the degree of disorder t o  be even as  high as 10 
and using the lowest proposed value (23)  for y s  ( i - e .  lo3) 
one obtains: 

2 -E S n = 10- = lo3 e r3 
R L 

o r  
Es = 3.45 eV 

(A-2) 

(A-3) 

Figure 18  i s  a plot  o f  equilibrium defect concentra- 
3 t i on  versus formation energy for  T = 35OoC and Ys= 10 . It 

i s  -seeripfrom t5is f igure  that fo r  a fo rmi t lon  energy of 3.5 
eV the concentration of Schottky defects  i s  1011cm'3. 
view of the f a c t  t ha t  the changes i n  defect  s t r u c t u r e  observed 
i n  t h i s  invest igat ion (viz. growth of peaks i n  TSC curves) 
involve concentrations i n  excess of  1014 cm-', it i s  improb- 
able  t h a t  the Schottky mechanism i s  responsible fo r  these 
defects  . 

I n  

Since the factor  y f  fo r  Frenkel defects  i s  believed 
t o  be less than lo3 (see Section 11-1-2) the concentration 
of Frenkel defects corresponding to  any given energy of 
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formation i s  less than the concentration of Schottky defects .  

t 
n 

_ .  I 

t \ 
10 

Figure 18. 
Schottky defect concentration 
as  a function of formation energy E \ 

\ n = b-N, 

I 
10121 

I lo9 

\ 
-E s / 2kT 

s l e  
3 for vs = 10 and T = 35OoC. \ 

-.. 

2.5  3 . 0  3 . 5  4 . 0  4 . 5  
I - i 



T t . . 

The mean f ree-pa th  L between co l l i s ions  with imperfec- 
t ions  and phonons f o r  an electron t ravel ing through a c r y s t a l  
with thermal veloci ty  Vth can be obtained from the product 
of  the thermal ve loc i ty  and the c o l l i s i o n  t i m e  T,. . 

The thermal 

c. 

velocity i s  obtained from the re la t ion .  

kT (B-1) 

where M* i s  the e f fec t ive  mass of the electron (=0.2 mo( 65)). 
Hence, a t  room temperature, fo r  CdS, 

The c o l l i s i o n  t i m e  Tc can be obtained from the 
mobili ty and the effect ive m a s s  through the r e l a t ion  (66); 

03-31 cI = eTc 
ZF 

2 The mobility fo r  CdS a t  room temperature i s  200 cm /V-sec 

~ <eu -e,- - 

TC - 4 1 0 - ~ ~ ~ ~ ~ .  03-41 

Hence the mean f r ee  path i s ;  
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From the area beneath a glow peak one can estimate 
the density of the l eve l  i n  the following way. 
e lectrons freed from the trapping leve l  were permitted t o  
travel the length of  the c rys t a l  before recombining, the 
number of e lectrons l iberated from the t r ap  would be given 
by: 

I f  the 

i ( t ) d t  " = 
e 

where i 
t i m e .  However, because the electrons do recombine a f t e r  
having spent a l i fe t ime i n  the conduction band T (which i s  
d i f fe ren t  from the d r i f t  time required for  an electron t o  
t r ave l  the length of the c rys t a l  TD) i t  i s  c l ea r  t ha t  the 
number of e lectrons contributing t o  the peak i s :  

i s  the current of the glow curve a s  a function of 
( t )  

The r a t i o  T/TD i s  cal led the 

(C-2) 

photoconductive gain. 

The times T and TD can be estimated from the accompany- 
-_ ~~ 

ing spec t ra1  response- cume, ff negfmst M r  temperme 
and l igh t  in tens i ty  dependence, (68) i n  the following manner. 

The electron l i fe t ime T can be obtained from the 
steady s t a t e  equation: 

n = aT (C-3)  

where n i s  the conduction electron concentration and a i s  
the r a t e  a t  which electrons are  being opt ica l ly  excited i n t o  
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v “ 8  

99 . 
the conduction band per cm3 (assumed equal t o  the rate per 
cm3 of photon absorption). 
response cuFwre f m m  the e x p r e ~ ~ i ~ n ,  

n can be found from the spec t ra l  

where e i s  the electronic  charge, the mobility, E electric 
f i e l d  and A the area of the c r y s t a l  perpendicular t o  the 
d i rec t ion  of current  flow. 

The quanity a c a n  be found from Figure 8 curve #2. 
Hence, a t  A t  515 ~ 8 0 %  of the incident l i g h t  i s  absorbed. 

515 q, 

3 * 0 . 8  x rn electrons / c m  -sec. 

where (Th) i s  the thickness of the c r y s t a l  (- 5 x cm.). 
Hence : 

( c - 6 )  au 1.6 x 1015 electrons / c m  3 -sec. 

Combining equations (C-3), (C-4) and (C-6) we obtain 

-3 L i  10-l~ sec. - 10 sec. 
( 1.6) 

where i i s  the ctmreni~-atf35rq,. 
given by: 

‘ftre drift time TD fs 

where L i s  the length of the c rys t a l .  

Hence combining (C-7) and (C-8) we obtain 

(c-7) 



* &  

L 60 
* 

where V i s  the volume of the c rys ta l .  
i n t o  (C-2) we obtain: 

Substi tuting (C-9) 

- -  N - f ( t ) d t  1.6 x 1015 (C-10) V 1 

Approximately the in tegra l  i ( t )a t  by imax b t ,  where A t  i s  the 
ha l f  width of  the glow peak (At = bT 
the  current a t  the maximum we obt&?&a!!!&pgtfigtf6!miber of 
e iectrons liberated p e r  cm . 

1 and imax i s  

3 

L a x  bT 5 
1 n = .  tr (C-11) 

I f  we assume t h a t  the traps were f i l l e d  i n i t i a l l y ,  equation 
(C-11) gives us the density of trapping leve ls  located a t  
an energy 25 kTm below the Conduction band. 
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Varian Associates recommends the following procedures 
fo r  cleaning stainless steel ( 6  9) 

1. Solvent degrease - Trichloroethylene o r  equivalent. 
Tfiree stages,  l iquid dip, vapor, drain and dry. 

2. Hot a l k a l i  dip - Approximately 2 minutes depending 
on condition. 

3. Hot tap water rinse.  

- (Solution 1:l HC1 (Tech) 

5, Cold tap water rinse.  

6. N i t r i c  - Hydrofluoric acid dip - 97 volume % 
conc. " 0 3  3 volume % conc, HF. Dip u n t i l  surface 
gases s l ight ly .  Increase rate of attack. Handle 
with a l l  caution and respect due hydrofluoric 
acid. 

7. Cold tap water r inse  - Repeat twice. 

8. Deionized water r inse,  cold (NaC1 l e s s  than 1 p.p.m.) 
Repeat twice. 

9, Methanol r inse - Use electronic  grade. 
- ~ -  - ~- - 

10. Wa-m-air-dry - I n  clean, f i l t e r e d ,  fume-free a i r  
a t  approximately 65OC. 


